23 research outputs found

    Robotics of human movements

    Get PDF
    The construction of robotic systems that can move the way humans do, with respect to agility, stability and precision, is a necessary prerequisite for the successful integration of robotic systems in human environments. We explain human-centered views on robotics, based on the three basic ingredients (1) actuation; (2) sensing; and (3) control, and formulate detailed examples thereof

    The Grasp Perturbator: Calibrating human grasp stiffness during a graded force task

    Get PDF
    In this paper we present a novel and simple handheld device for measuring in vivo human grasp impedance. The measurement method is based on a static identification method and intrinsic impedance is identified inbetween 25 ms. Using this device it is possbile to develop continuous grasp impedance measurement methods as it is an active research topic in physiology as well as in robotics, especially since nowadays (bio-inspired) robotics can be impedance-controlled. Potential applications of human impedance estimation range from impedance-controlled telesurgery to limb prosthetics and rehabilitation robotics. We validate the device through a physiological experiment in which the device is used to show a linear relationship between finger stiffness and grip force

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells

    Get PDF
    Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. The American Cancer Society, estimates that approximately 20% of all worldwide cancers are caused by infection. Mycoplasma, a genus of bacteria that lack a cell wall, are among the few prokaryotes that can grow in close relationship with mammalian cells, often without any apparent pathology, for extended periods of time. In this study, the capacity of Mycoplasma genitalium, a prevalent sexually transmitted infection, and Mycoplasma hyorhinis, a mycoplasma found at unusually high frequency among patients with AIDS, to induce a malignant phenotype in benign human prostate cells (BPH-1) was evaluated using a series of in vitro and in vivo assays. After 19 weeks of culture, infected BPH-1 cells achieved anchorage-independent growth and increased migration and invasion. Malignant transformation of infected BPH-1 cells was confirmed by the formation of xenograft tumors in athymic mice. Associated with these changes was an increase in karyotypic entropy, evident by the accumulation of chromosomal aberrations and polysomy. This is the first report describing the capacity of M. genitalium or M. hyorhinis infection to lead to the malignant transformation of benign human epithelial cells and may serve as a model to further study the relationship between prostatitis and prostatic carcinogenesis

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p&lt;0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (&lt;1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (&lt;1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Human Arm Impedance and EMG in 3D

    Get PDF
    This paper shows the relationship between EMG signals and human arm stiffness, measured in 3-D space. Preliminary results demonstrate the viability of this approach, which can then be used to measure human arm impedance from EMG only. Understanding human stiffness during interaction tasks will allow the development of an appropriate skill transfer exercise for Programming-by-Demonstration. Making the human aware of her own stiffness adaption gives a better understanding towards programming a robot impedance controller

    iEMG: Imaging Electromyography

    No full text
    iEMG - imaging electromyography - is a novel approach for processing EMG data. To date, it is very difficult to reliably detect deeper muscle activation by surface EMG measurements - mainly because of severe crosstalk between deep and superficial muscle activation. iEMG makes use of this crosstalk between a large number of EMG-electrodes to reconstruct a 3D image of the generating potential distribution within a given area. The depth of muscular activity is directly visible, even for deeply buried muscles. The iEMG method is robust and valid as was shown by various simulations as well as by in vivo sEMG and ultrasound measurements on the human forearm. This new method will be valuable for kinesiologic research, e.g. revealing to date hidden muscle synergies. It will also be useful for advanced prosthetics, allowing for better control of high-DOF-prosthetics, but may also help to avoid some applications of invasive EMG

    Model-free robot anomaly detection

    Get PDF
    Safety is one of the key issues in the use of robots, especially when human–robot interaction is targeted. Although unforeseen environment situations, such as collisions or unexpected user interaction, can be handled with specially tailored control algorithms, hard- or software failures typically lead to situations where too large torques are controlled, which cause an emergency state: hitting an end stop, exceeding a torque, and so on—which often halts the robot when it is too late. No sufficiently fast and reliable methods exist which can early detect faults in the abundance of sensor and controller data. This is especially difficult since, in most cases, no anomaly data are available. In this paper we introduce a new robot anomaly detection system (RADS) which can cope with abundant data in which no or very little anomaly information is present

    iEMG: Imaging Electromyography

    No full text
    Advanced data analysis and visualization methodologies have played an important role in making surface electromyography both a valuable diagnostic methodology of neuromuscular disorders and a robust brain-machine interface, usable as a simple interface for prosthesis control, arm movement analysis, stiffness control, gait analysis, etc. But for diagnostic purposes, as well as for interfaces where the activation of single muscles is of interest, surface EMG suffers from severe crosstalk between deep and superficial muscle activation, making the reliable detection of the source of the signal, as well as reliable quantification of deeper muscle activation, prohibitively difficult. To address these issues we present a novel approach for processing surface electromyographic data. Our approach enables the reconstruction of 3D muscular activity location, making the depth of muscular activity directly visible. This is even possible when deep muscles are overlaid with superficial muscles, such as seen in the human forearm. The method, which we call imaging EMG (iEMG), is based on using the crosstalk between a sufficiently large number of surface electromyographic electrodes to reconstruct the 3D generating electrical potential distribution within a given area. Our results are validated by in vivo measurements of iEMG and ultrasound on the human forearm
    corecore